Technology-Enhanced Learning - reconsidering how, to whom, and what to teach?


Thursday 18 February 2010
6pm – 7pm
Theatre A, Elisabeth Murdoch Building (Building 134)
The University of Melbourne, Parkville Campus

Register your attendance: education-events@unimelb.edu.au
DEAN’S LECTURE SERIES 2010
Professor Richard Noss Lecture

Much of our time as educationalists is spent in considering how to enhance the teaching and learning of knowledge that has been subject only to quantitative change over the last century. The development of these curricula was formed by the needs of a pre-computational era, with inert technologies, and forms of representation that are - for some subjects at least - now largely obsolete. In this lecture, Professor Noss will consider how the ubiquity of digital representations affords the opportunity to re-evaluate what becomes possible to express and to design, how we might rethink our notions of complexity and hierarchy, and the implications of this for social inclusion. He will use examples from the work of the Technology Enhanced Learning programme, a four-year national research effort funded by an interdisciplinary collaboration between two of the UK research councils to illustrate this lecture.

www.education.unimelb.edu.au/news/lectures

Free public lecture - all welcome. Refreshments provided
For further information contact Lauren Graham:
T: + 61 3 8344 8640
E: education-events@unimelb.edu.au

Richard Noss is a Professor at the Institute of Education, London (IOE) and co-director of the London Knowledge Lab.

He was co-founder and deputy scientific manager of Kaleidoscope, the European network of excellence for technology enhanced learning, and is currently the director of the Technology Enhanced Learning phase of the Teaching and Learning Research Programme. Professor Noss has directed some 20 research projects, and currently directs the MiGen project, which seeks to design and implement an intelligent learning environment for improving 11-14 year-old students’ learning of mathematical generalisation. He has edited and authored six books; his most recent (co-authored with Hoyles, Kent and Bakker), Improving Mathematics at Work, questions the mathematical knowledge and skills that matter in the 21st century world of work, studying the evolving use of mathematics in the rapidly-changing context of new technologies and globalisation.